12 Quadratic Functions

12-1 Quadratic Equations with Perfect Squares

Objective: To solve quadratic equations involving perfect squares.

Vocabulary

Perfect square An expression such as x^2 , $(x-1)^2$, or $(2x+5)^2$.

Roots of $x^2 = k$ An equation in the form "perfect square = k" $(k \ge 0)$ can be solved by the method shown in Examples 1 and 2.

If
$$k > 0$$
.

then
$$x^2 = k$$
 has 2 real roots: $x = \pm \sqrt{k}$.

$$x = \pm \sqrt{k}$$
.

If
$$k = 0$$
, the state of the s

If
$$k = 0$$
, then $x^2 = k$ has 1 real root: $x = 0$.

$$x = 0$$

If
$$k < 0$$
.

then
$$x^2 = k$$
 has **no** real roots.

Example 1

Solve:

a.
$$m^2 = 36$$

a.
$$m^2 = 36$$
 b. $3r^2 = 48$ **c.** $x^2 - 11 = 0$ **d.** $m^2 = -25$

Solution

a.
$$m^2 = 36$$

$$m = \pm \sqrt{36}$$

$$m = \pm 6$$

The solution set is $\{6, -6\}$.

The solution set is
$$\{4, -4\}$$
.

d.
$$m^2 = -25$$

b. $3r^2 = 48$ $r^2 = 16$

c.
$$x^2 - 11 = 0$$

 $x^2 = 11$
 $x = \pm \sqrt{1}$

The solution set is $\{\sqrt{11}, -\sqrt{11}\}$.

Since the square of any real number is always a nonnegative number, there is no real solution.

 $r = \pm \sqrt{16} = \pm 4$

Solve. Express irrational solutions in simplest radical form. If the equation has no solution, write No solution.

1.
$$x^2 = 49$$

2.
$$2x^2 = 18$$

3.
$$x^2 = \frac{25}{36}$$
 4. $a^2 = -16$

4.
$$a^2 = -16$$

5.
$$2x^2 = 128$$

6.
$$5x^2 = 125$$
 7. $9x^2 = 81$

7.
$$9x^2 = 81$$

8.
$$x^2 - 81 = 0$$

9.
$$x^2 + 25 = 0$$

10.
$$m^2 - 10 = 0$$

7.
$$9x^2 = 81$$

8. $x^2 - 81 = 0$
11. $0 = 6x^2 - 24$
12. $0 = 3m^2 - 75$

12.
$$0 = 3m^2 - 7$$

Example 2

Solve
$$(x + 3)^2 = 49$$

Solution

$$(x + 3)^2 = 49$$

$$x + 3 = \pm \sqrt{49}$$

$$x = -3 + 7$$

$$x = \pm \sqrt{49}$$
$$x = -3 \pm 7$$

$$x = 4$$
 or $x = -10$

Note that $(x + 3)^2$ is a perfect square.

Find the positive or negative square root of each side. Subtract 3 from each side.

$$x = 4 \text{ or } x = -10$$
Check: $(4 + 3)^2 \stackrel{?}{=} 49$

$$\begin{array}{c} +3)^2 \stackrel{?}{=} 49 \\ 7^2 \stackrel{?}{=} 49 \end{array}$$

Check:
$$(4 + 3)^2 \stackrel{?}{=} 49$$
 $(-10 + 3)^2 \stackrel{?}{=} 49$ $(-7)^2 \stackrel{!}{=} 49$ $49 = 49 \checkmark$ $49 = 49 \checkmark$

Quadratic Equations with Perfect Squares (continued)

Solve. Express irrational solutions in simplest radical form. If the equation has no solution, write No solution.

13.
$$(x-3)^2=0$$

14.
$$(z-1)^2=16$$

15.
$$(r-5)^2 = 100$$

16.
$$(x-1)^2 = 25$$

17.
$$(2x + 9)^2 = 225$$

18.
$$(t-4)^2=9$$

Example 3

Solve: **a.**
$$3(x-2)^2 = 21$$

b.
$$v^2 + 10v + 25 = 36$$

Solution

a.
$$3(x-2)^2 = 21$$

 $(x-2)^2 = 7$
 $x-2 = \pm \sqrt{7}$
 $x = 2 \pm \sqrt{7}$
 $x = 2 + \sqrt{7}$ or $x = 2 - \sqrt{7}$

The check is left to you.

The solution set is $\{2 + \sqrt{7}, 2 - \sqrt{7}\}.$

b.
$$y^2 + 10y + 25 = 36$$

 $(y + 5)^2 = 36$
 $y + 5 = \pm \sqrt{36}$
 $y + 5 = \pm 6$
 $y = -5 \pm 6$
 $y = 1$ or $y = -11$

The check is left to you.

The solution set is $\{1, -11\}$.

Note: Example 3(b) could also have been solved by factoring.

Solve. Express irrational solutions in simplest radical form. If the equation has no solution, write No solution.

19.
$$9m^2 - 1 = 35$$

20.
$$27 = 2r^2 - 5$$

21.
$$3x^2 - 9 = 33$$

22.
$$64 = 2t^2 - 8$$

23.
$$2n^2 + 6 = 38$$

24.
$$7x^2 + 1 = 64$$

25.
$$3(m-2)^2 = 15$$

26.
$$400 = 4(z - 2)^2$$

27.
$$2(x-5)^2=98$$

28.
$$25 = (2x + 1)^2$$

29.
$$5(m-3)^2=80$$

30.
$$6(z + 5)^2 = 216$$

$$31. \ 3(x-1)^2 = -24$$

32.
$$(3x - 1)^2 + 12 = 4$$

33.
$$6(x + 5)^2 = 24$$

34.
$$7(x + 2)^2 = 112$$

35.
$$(x-2)^2-1=35$$

36.
$$2(3n-1)^2=8$$

37.
$$3(2x - 1)^2 = 27$$

38.
$$2(x + 3)^2 - 4 = 68$$

39.
$$5(x-1)^2+3=23$$

40.
$$x^2 - 2x + 1 = 9$$

41.
$$x^2 + 18x + 81 = 98$$

42.
$$x^2 - 12x + 36 = 64$$

43.
$$x^2 - 4x + 4 = 16$$

44.
$$x^2 + 10x + 25 = 81$$

45.
$$n^2 - 8n + 16 = 36$$

Mixed Review Exercises

Express each square as a trinomial.

1.
$$(x - 8)^2$$

2.
$$(2x + 1)^2$$

3.
$$(4x - 3)^2$$

4.
$$(-2c + 3)^2$$

5.
$$\left(x + \frac{1}{4}\right)^2$$

6.
$$\left(x - \frac{1}{5}\right)^2$$

7.
$$\left(\frac{1}{2}x + \frac{1}{3}\right)^2$$

8.
$$\left(\frac{1}{4}x - \frac{2}{3}\right)^2$$

9.
$$(x + 11)^2$$